The Intrinsic Connection between
Architectural Design
and
Structural Materiality
A lens for looking at....
AE 101: The History of the Built Environment
Prof. Terri Meyer Boake

The Sketchbook

Qum in Amaftinporrits pulofrs

Stone Fium Tehmique to Tethnatgy

- cany = bisley, thial mat enar wroz the wey to huided

Aertheries

with creation and eppretiation of sesity

Stune:

-raturn maleriol
Ginhel for campursian
 -waler impaifr maitrial

all bid bircen an alm deleniale

$\frac{\text { Fories }}{\text { tindion iesitretahing }}$

tane
Wamath Ah CH To spur

Now wht beak

$$
\begin{aligned}
& \text { Guthe Arch }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { mine fubu doed } \\
\text { lies af misue }
\end{array} \\
& \text { the Fiuntmint }
\end{aligned}
$$

tral ond freen os, mathenalize ond plywios
ficentinge
3000 ECE, Wifotio, inglard

- halull

Law of Hammurabai (750 B \triangle.
-buticaly . fa buider buiti a house and that buiding fell wad kuld Semeper, Mre buldier medid to put to testh
Arcient Stane Tichaicues
Fyppt : wed tanys 10 nowe beary obpets (sGeres)

Strypad Pramial of Djoser at Saquara (2ath Catury A. (E.) - tarned legt tapelly in tad uepar

Harisists

Bas lelh, biakil

sione axil, hat ratked
Laiticus

-tal lye prowe betion
Pruf and Churles Derian ind Aw wewsit Matha, beas cictib itn fither tatite
what, cpites

 lszerfer mertio colhy
 as tsantion

Nown of Noizm det

Aradyl, Mest medime, nigithil
thy

Nallivive Jome lemplex

7aviruath le iri

Thicol paill it the cheter) le
Pe thacthas itiaj Belding

Fraet Githe!
 tuitar whenoted brik $\mathfrak{k m i s}$

200ks
VAVLES

MEREL VAGLT CLasmen

CLABAER-

WV/I?

fult

PONTFO 6.7HIL

A- LTmTEA:D
as TvPaR
D.NES

POME

PENDENTIUE DOME

PBUDENTIUT DOME
(w) H0NF POMES

am (glue laminated timber)
abrtuted by gling individual pieces of dïnenstonal lumber together to form coumns parns, is headers
can be made out of young trees glue-laminated timber parnels have the apperith sme-way spanning capabiting

aminaled Vencer Lumber (LVL)

解 aborteated by x prodused that houe migh stenoth in ome ofonestion

Laminated Shond Lumber (LSL)
is tabitrated firom faked waod shands gured tayether in lage billets. The lergth is fimited on

\rightarrow LSL can be uizd for Foots, walld, \&ueriitsol mombers where buge foor-lo-floor helights requiret (sose for ictiorrolioliamn)

Sogweinmeat baildings. MyST use wood (Izw)
$5 \Rightarrow$ 0rams ane spearming at 97^{3} angles
\angle use boits in heavy Nowior
4 stel Kiden leslide

1-Hult catto for the Qufforioing Arts [0monisn
de
dit telt Pronan fisfifor

- bran see olocts on wrod

LVE

4 widpitect warited to woth nke a buesh.
4 sant io corcesd that steed mad ig, mathy surfytivg tgether
 if if hoavg trougn, it does
 4 srote 8 arlog

4 usindoas not at syalerel
 4 aposes batis
Fitbanend Oh, Hall [Rithmend, \&C]-khis Afikhint wih litison Eabler - wo

- L crosiatier nudem
- Taperal Termanal [tuimen, bpan]
$\mathrm{Bx}_{\mathrm{x}} \rightarrow$ bees dilm ine no out is not geting old olagh bebrise af gon

Teme st sumensery

Emiprica kg egecration
as temples has A pipserert Anke Aindividesairy?

Lismalited erev tpa.

a Alistos light to enfe

\rightarrow limestrac
asmesther

h Hept +3 3nnk

mut bese locinered and 1 the hr_{F}

 \& rimilat irsias rotiont visibiy in chapt

theriexte natios
S. wluentis canvid in ms picue

Gre wrst Adsa mandron mus inso their an
Torepies en exserase
traincremimive

trimestior

Ereukeves or
Su bolumns, cerred At
mewern at newe
brade columus, meniy

tomule ve retume
Gityie ac arochlonirg 407 6c
the singtical irye

- promernale
evumi areme
urion rlatered wit
terg notiy en loxel

Hin suiximg: ate

The Emyth mat the sem

Et plapic amd tolliting is
wirms eidy - elding by Ais
© literimate ble immennim
prituct! vismixp pidintem coreact
sun is her a sivers
 syin cawter mateiatis sums pronnule

 restcany setsms.

The vasineres

Ruren mut iteriombor
ctemen apatumia
Nom the ssurh reis are etsiditan
am. $14, \mathrm{x} \mathrm{dm}$

Trexhnvan कuale

20tr The irste it A yetriweto foum an tancilo hatif the time
The piles, isty pentish ot rollight sames
 atrive aididet bitivity or the ut an somitiks and intarn Nomar cempenians for iourts. simes.

The temert imusei

 Cimb in thic Aor a urger renis,
 rd i sater mill intider wifel fal koring wermet shorne stio attw tsink quel kath the fruce ensegy to ariote ar (matitiationg
the Triem) ne trien)

-rsyth et say

- mingle ot incos

\square

forces

Some materials are better than others at resisting forces

We can make better design choices if we select the materials that are better for the job

16.9 (far left) Studies of the behaviour of a cantilever beam by Galileo (top) and Coulomb (bottom). Galileo assumed that rotation would occur around the bottom edge at B. Coulomb more correctly assumed that the internal stresses over the depth of the crosssection would vary continuously from compression at the bottom to tension at the top, and that. in addition to these stresses acting longitudinally, there would be vertical shear stresses.
16.10 (left) Studies of elasticity by Hooke.

Prereres
Light interference patterns showing stress in a plastic model beam under polarized light

Lines of pressure and tension in a beam

Vertical shear in a heam

Horizontal shear in a beam

Shear failare near support

Soen bending and opening of lower sterface in tenslon

Tenalle structure aloneta chain suspended from troo sopports conforming to line of tension in a catenary
curve

Comprossion structure alone: a masorary arch ivelged into position along line of compression in a cuersodif catenary corve

In the semicircular masonry arch the line of pressure dovs not conform to the shape of the arch and therefore the croun tends to fuil mhile the sides

Using the Arch to span

A BARREL VAULT is essentially a

 row of semi circular arches sitting so tightly in a row as to make a continuous, linear arched space (room)

Though the pointed Gothic arch better fits the ideal line of pressure, if too acstely pointed the crown tends to rise white the stdes full inwards. (Similar to suddle failure in pointed corbel vaults)

In a semicircular arch where the stones can slide the crown c will fall while the sides s are pressed out above a secure springing v or at the springing itselfa.

More normal is the rotational deffection of the stones durling failure.

A barrel vault exerted a continuous thrust along its sides.

Usually the thrusts were dissipated in the heavy mass of the haunching and the supporting walls.

In rare instances, the masons used timber ties to restrain the thrusts of the barrel vault.

BUTTRESS

A projecting support of stone or brick against a wall

A GROIN VAULT or groined vault (also sometimes known as a double barrel vault or cross vault) is produced by the intersection at right angles of two barrel vaults.
The word "groin" refers to the edge between the intersecting vaults.
The arches may be round (Roman) or pointed (Gothic).

Thin cylindrical barrel vaults fail when the crown alls, pushing out the sides. Thin stiffening plates an reduce this flexure.

olding along the crown can replace the longitudinal tiffener. Folded ridges set transversely can brace te sides.

A pyramidal roof is rigid but requires support below the sides. The cross-ridged roof can rest on four isolated supports, channeling loads down the folded groins.

In the pointed Gothic cross vault the panels of maulfino more curned to modea inta moeition

> to make a DOME you take an arch, and rotate it 36Odegrees to make a circular space

 corbelled domes by slightly canting the courses, Later domes with steeply pitched radiating joints required centering.

This is what it feels like to be a dome.
a PENDENTIVE is a constructive device permitting the placing of a circular dome over a square room or of an elliptical dome over a rectangular room.

a COLUMN is a freestanding support
a PILASTER looks like a column except that it is partially embedded in a the wall
the word 'pillar' is not really used anymore

Fig. 110. Moving a pillar

62 Colossal stone transport: isometric restoration: (a) Metagenes' method (c. 550 B.c.); (b) Paconius' method (first century)

Fig. 139. Levering machinery

Component size and the ability to move a piece into location is a very critical aspect of understanding progress in construction through history

Why?

$$
\begin{aligned}
& \text { Why } \\
& \text { Not? }
\end{aligned}
$$

Aesthetics:
\sim a set of principles concerned with the nature and appreciation of beauty, especially in art.
~ the branch of philosophy that deals with the principles of beauty and artistic taste.

